skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Lichang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A series of valine functionalized supramolecular hypervalent iodine macrocycles (HIMs) with enlarged aromatic cores, including naphthalene and anthraquinone, have been synthesized. Single crystal analysis shows the macrocycles consist of a slightly distorted cyclic planner interior with three carbonyl oxygens from the amino acid residues facing towards the center of the macrocycle and all three alkyl groups above one plane. Owing to the enlarged aromatic core, the naphthalene-based HIMs were successfully co-crystallized with Buckminsterfullerene (C60) into a long-range columnar supramolecular structure. The assembled architecture displays a long-range pattern between HIM and C60 in a 2 : 3 ratio, respectively. Disassembly of the HIMs can be accomplished by adding anions of tetrabutylammonium (TBA) salts that selectively bind with the electron deficient iodine center in HIM systems. A comparative study of the associations constants and the binding energies for different aromatic-based HIMs with TBA(Cl) and TBA(Br) is presented. 
    more » « less
    Free, publicly-accessible full text available January 3, 2026
  2. Free, publicly-accessible full text available December 25, 2025
  3. Activity, cost, and durability are the trinity of catalysis research for the electrochemical oxygen reduction reaction (ORR). While studies towards increasing activity and reducing cost of ORR catalysts have been carried out extensively, much effort is needed in durability investigation of highly active ORR catalysts. In this work, we examined the stability of a trimetallic PtPdCu catalyst that has demonstrated high activity and incredible durability during ORR using density functional theory (DFT) based computations. Specifically, we studied the processes of dissolution/deposition and diffusion between the surface and inner layer of Cu species of Pt 20 Pd 20 Cu 60 catalysts at electrode potentials up to 1.2 V to understand their role towards stabilizing Pt 20 Pd 20 Cu 60 catalysts. The results show there is a dynamic Cu surface composition range that is dictated by the interplay of the four processes, dissolution, deposition, diffusion from the surface to inner layer, and diffusion from the inner layer to the surface of Cu species, in the stability and observed oscillation of lattice constants of Cu-rich PtPdCu nanoalloys. 
    more » « less
  4. Understanding the structural ordering and orientation of interfacial molecular assemblies requires an insight into the penetration depth of the probe molecules which determines the interfacial reactivity. In contrast to the conventional liquid probe-based contact angle measurement in which penetration depth is complicated by the liquid cohesive interaction, we report here a new approach that features a simple combination of vaporous hexane, which involves only van der Waals interaction, and quartz crystal microbalance operated at the third harmonic resonance, which is sensitive to sub-monolayer (0.2%) adsorption. Using this combination, we demonstrated the ability of probing the structural ordering and orientation of the self-assembled monolayers with a sensitivity from penetrating the top portion of the monolayers to interacting with the very top atomic structure at the interface. The determination of the dependence of the adsorption energy of vaporous hexane on the penetration depth in the molecular assembly allowed us to further reveal the atomic-scale origin of the odd–even oscillation, which is also substantiated by density functional theory calculations. The findings have broader implications for designing interfacial reactivities of molecular assemblies with atomic-scale depth precision. 
    more » « less
  5. Abstract Fibrous materials serve as an intriguing class of 3D materials to meet the growing demands for flexible, foldable, biocompatible, biodegradable, disposable, inexpensive, and wearable sensors and the rising desires for higher sensitivity, greater miniaturization, lower cost, and better wearability. The use of such materials for the creation of a fibrous sensor substrate that interfaces with a sensing film in 3D with the transducing electronics is however difficult by conventional photolithographic methods. Here, a highly effective pathway featuring surface‐mediated interconnection (SMI) of metal nanoclusters (NCs) and nanoparticles (NPs) in fibrous materials at ambient conditions is demonstrated for fabricating fibrous sensor substrates or platforms. Bimodally distributed gold–copper alloy NCs and NPs are used as a model system to demonstrate the semiconductive‐to‐metallic conductivity transition, quantized capacitive charging, and anisotropic conductivity characteristics. Upon coupling SMI of NCs/NPs as electrically conductive microelectrodes and surface‐mediated assembly (SMA) of the NCs/NPs as chemically sensitive interfaces, the resulting fibrous chemiresistors function as sensitive and selective sensors for gaseous and vaporous analytes. This new SMI–SMA strategy has significant implications for manufacturing high‐performance fibrous platforms to meet the growing demands of the advanced multifunctional sensors and biosensors. 
    more » « less